- Zahlensystem
Zahlensystem die Zusammenstellung aller natürlichen Zahlen in der Weise, daß man sich jede als eine Summe von Gliedern denkt, welche nach den Potenzen einer gewissen Zahl, der Grundzahl od. Basis des Z-s, geordnet sind. Man unterscheidet ein dyadisches, triadisches, tetradisches, pentadisches, hexadisches, heptadisches, dekadisches, dodekadisches etc. Z., je nachdem die Grundzahl 2, 3, 4, 5, 6, 7, 10, 12, etc. ist. So viel Einheiten die Grundzahl hat, so viel Ziffern sind für das Z. mit Einschluß der 0 nöthig. Wir bedienen uns des dekadischen od. zehntheiligen Z-s u. nennen die auf diese Weise ausgedrückten Zahlen Decimalzahlen. 10 ist hier die Eintheilungszahl od. Basis, daher machen 10 Einheiten 1 Einheit der ersten höheren Ordnung Zehner, 10 Zehner machen eine Einheit der zweiten höheren Ordnung: Hundert; wieder 10 davon gibt eine Einheit der dritten höheren Ordnung: Tausend etc., eben so ist der 10. Theil eines Einers eine Einheit erster niederer Ordnung: 1 Zehntel, dann der 10. Theil hiervon 1 Hundertel etc. Die Zahlen 0. Ordnung, welche ein od. mehre Ganze ausdrücken, aber kleiner sind als eine Einheit der 1. höheren Ordnung, bezeichnet man als Einer; Zehner, Hunderte, Tausende heißen die Einheiten der 1., 2., 3. höheren Ordnung; dann setzt man zusammen u. erhält für die Einheiten der 4. u. 5. höheren Ordnung die Benennungen Zehntausend, Hunderttausend, für die 6. Ordnung kommt eine neue Benennung: Million, für die 7. bis 11. kehren dieselben in derselben Reihenfolge wieder, mit der Zusammensetzung von Million; Million mal Million benennt man durch Billion u. überhaupt die Einheiten der 12. bis 17. Ordnung durch Zusammensetzung der Namen 0. bis 5. Ordnung mit dem Wort Billion. In derselben Weise führen die nächsten sechs Ordnungen den Namen Trillion etc. Für den Gebrauch jedes Z-s ist es nun ganz wesentlich, daß man beim Schreiben jeder beliebigen Zahl sich das Schreiben der verschiedenen Potenzen der Basis erspart u. vielmehr durch die Stellung der Ziffern andeutet, von welcher Ordnung die betreffenden Einheiten sind. So nehmen die Zehner die erste, die Hunderte die zweite u.s.f., die Millionen die sechste Stelle vor den Einern, dagegen die Zehntel die erste, die Hundertel die zweite u. s. s. Stelle nach den Einern ein; die Einer selbst aber macht man zwischen den übrigen Ziffern kenntlich durch ein rechts daneben gestelltes Komma (Punkt, Einerzeichen, Decimalzeichen). Also bedeutet 2804,356.. 2 Tausende + 8 Hunderte + kein Zehner + 4 Einer + 3 Zehntel + 5 Hundertel + 6 Tausendel + .. od. 2 . 103 + 8 . 102 + 0 . 104 + 4 . 10° + 3 . 10–1 + 5 . 10–2 + 6 . 10-3 + .. Das dekadische Z. stammt von den Indern u. ist durch die Araber, wie es scheint, um 1100 in Europa bekannt worden; die Rechnung mit Decimalbrüchen ist durch Regiomontan 1764 eingeführt; die Bezeichnungen der größeren Zahlen nach Millionen, Billionen rühren von Girard 1629. Außer dem Decimalsysteme ist noch von besonderem Interesse das dyadische u. das dodekadische, jenes, weil es möglichst weniger Ziffern bedarf; dieses, weil seine Grundzahl 12 unter allen Zahlen bis 24 die kleinste ist, welche vier verschiedene Theiler hat, nämlich 2, 3, 4 u. 6, während 10 nur durch 2 u. 5 theilbar ist. Dessenungeachtet wird es nie dahin kommen, daß das dodekadische System das unserige, auf welches die Zahlwörter in den Sprachen aller civilisirten Völker sich beziehen, verdrängen wird, obgleich sich Werneburg bemühte zu beweisen, daß das Taunzahlensystem, wie er es nennt, das einzig vollkommene sei, in ein taun einard sechs taunten Jahre, od. im letzten Jahr des 18. Jahrh. u.: Teliosadik, 1. Thl., Lpz. 1060 (1800). Die 16 ersten dyadischen, dekadischen u. dodekadischen Zahlen sind folgende:
___ ___dyad. ___ __dekad. dodekad. ___ __1 1 1 ___ _10 2 2 ___ _11 3 3 ___100 4 4 ___101 5 5 ___110 6 6 ___111 7 7 _1000 8 8 _1001 9 9 _1010 10 ♀ _1011 11 ♁ _1100 12 10 _1101 13 11 _1110 14 12 _1111 15 13 10000 16 14 wo ♁, ♀, die Zeichen für 10 u. 11 sind. Um eine dekadische Zahl in eine von anderer gegebener Grundzahl zu verwandeln, dividirt man mit dieser Grundzahl in die gegebene Zahl, in die ganze Zahl des Quotienten abermals mit dieser Grundzahl u.s.f., bis man auf einen Quotienten = 0 kommt. Die bei jeder Division erhaltenen Reste geben von der Rechten nach der Linken neben einander u. zwar den letzten Rest in die erste Stelle links gestellt, die verlangte Zahl. Die dekadische Zahl 1835 in eine triadische zu verwandeln, führt man folgende Rechnung:
u. man erhält 1835 = 2111222; in der That ist 1835 = 2 . 36 + 1 . 35 + 1 . 34 + 1 . 33 + 2 . 32 + 2 . 31 + 2 . 30. Umgekehrt, ist eine gegebene z.B. dyadische Zahl, wie 110011, in eine dekadische[489] zu verwandeln, so multiplicirt man die erste Ziffer links mit 2 u. addirt zu dem Producte die zweite Ziffer; die dadurch erhaltene Zahl multiplicirt man wieder mit 2 u. addirt zu dem Producte die dritte u.s.f.
so ist 110011 = 51.
Pierer's Lexicon. 1857–1865.