Integralrechnung

Integralrechnung

Integralrechnung 1) Rechnung, welche in verschiedener Weise aus gegebenen Differentialen (s. Differentialrechnung) aller Art, die ursprüngliche Function finden lehrt, aus denen diese hervorgegangen sind, sie ist also das Umgekehrte der Differentialrechnung. Sie ist aber noch nicht so weit ausgebildet, wie diese, u. bietet bei weitem mehr Schwierigkeiten dar. Jede Function nun, deren Differential f (x) dx ist, heißt, in sofern sie aus ihrem Differential erst gefunden werden soll, das Integral von f (x) dx u. wird bezeichnet durch ∫ f (x) dx, für sie ist demnach d ∫ f (x) dx = f (x) dx. Das vorgesetzte Zeichen ∫ heißt das Integralzeichen. Aus einem Integral die ursprüngliche Function herleiten heißt integriren, die Herleitung Integration, eine Gleichung, in der einzelne Glieder mit dem Integralzeichen behaftet sind, u. die als allgemeiner Ausdruck dazu dient, für besondere Fälle die Art der Integration anzugeben: Integralgleichung, Integralformel. Durch die I. werden krumme Linien rectificirt, quadrirt, die durch ihre Bewegung entstehenden Körper cubirt, ihre Oberflächen ausgerechnet, die verkehrte Methode der Tangenten ausgeführt, aus Zahlen ihre Logarithmen u. umgekehrt gefunden etc. Newton legte in England den Grund zur I.; Leibnitz gelangte, unbekannt mit Newtons Angaben, in Deutschland zuerst auf sie. Ihre bedeutendste Vervollkommnung erlangte sie durch Jakob u. Joh. Bernoulli; durch Letzteren wurde sie in Frankreich bekannt, wo de l'Hopital sie vorzugsweise cultivirte. Später erwarben sich hier Varignon, d'Alembert, de Grange, de Condorcet u. la Place, in England Roger, Cotes Taylor, Rob. Smith, Cotin Maclaurin, Jak. Stirling, in Italien Gabr. Manfredi, in Deutschland Euler, von Wolf, Karsten, Kästner u. A. bedeutende Verdienste um ihre noch höhere Ausbildung. Literatur: s.u. Differentialrechnung; 2) (Kaufmannsr.), Rechnung über das Ganze.


Pierer's Lexicon. 1857–1865.

Игры ⚽ Поможем решить контрольную работу
Synonyme:

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Integralrechnung — ist die umgekehrte Operation der Differentialrechnung. Eine Funktion F(x) ist Integral der Funktion f(x) und wird mit f(x) d x bezeichnet, wenn d F (x)/d x = f (x) ist; f(x) heißt Integrand. A. Unbestimmte Integrale. Weil die Ableitung einer… …   Lexikon der gesamten Technik

  • Integralrechnung — Integralrechnung, die notwendige Ergänzung zur Differentialrechnung (s. d.). Während diese zu einer gegebenen Funktion den Differentialquotienten finden lehrt, besteht die Hauptaufgabe der I. darin, die Funktion zu finden, deren… …   Meyers Großes Konversations-Lexikon

  • Integralrechnung — Integrālrechnung, derjenige Teil der höhern Analysis, der aus einer gegebenen Gleichung zwischen den Differentialen zweier oder mehrerer veränderlichen Größen eine Gleichung oder Relation zwischen diesen Größen selbst auffinden lehrt, die… …   Kleines Konversations-Lexikon

  • Integralrechnung — Integralrechnung, Theil der höhern Analysis, welcher aus einer gegebenen Gleichung zwischen den Differenzen mehrer veränderlicher Größen eine Gleichung zwischen diesen Größen selbst auffinden lehrt; in gewisser Beziehung also das Umgekehrte der… …   Herders Conversations-Lexikon

  • Integralrechnung — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der …   Deutsch Wikipedia

  • Integralrechnung — Integration * * * ◆ In|te|gral|rech|nung 〈f. 20; Math.〉 Umkehrung der Differenzialrechnung ◆ Die Buchstabenfolge in|te|gr... kann in Fremdwörtern auch in|teg|r... getrennt werden. * * * In|te|g|ral|rech|nung, die (Math.): 1. <o. Pl.> das… …   Universal-Lexikon

  • Integralrechnung — integer »unbescholten, makellos«: Das Adjektiv wurde – wohl unter dem Einfluss von frz. intègre – im 19. Jh. entlehnt aus lat. integer (< *en tag ros) »unberührt, unversehrt; ganz«, das mit verneinendem 2↑ in..., ↑ In... zur Sippe von lat.… …   Das Herkunftswörterbuch

  • Integralrechnung — ◆ In|te|gral|rech|nung 〈f.; Gen.: ; Pl.: unz.; Math.〉 Zweig der Analysis (1), der sich mit der Untersuchung der Integrale von Funktionen u. der Berechnung des Inhalts von Flächen u. Körpern beschäftigt, die von beliebigen Kurven begrenzt werden;… …   Lexikalische Deutsches Wörterbuch

  • Integralrechnung — In|te|gral|rech|nung die; : Teilgebiet der ↑Infinitesimalrechnung (Umkehrung der Differenzialrechnung) …   Das große Fremdwörterbuch

  • Integralrechnung — In|te|g|ral|rech|nung (Mathematik) …   Die deutsche Rechtschreibung

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”